Gel formation in a mixture of a block copolymer and a nematic liquid crystal.
نویسندگان
چکیده
The viscoelastic properties of a binary mixture of a mesogenic side-chain block copolymer in a low molecular weight nematic liquid crystal are studied for mass concentrations ranging from the diluted regime up to a liquid crystalline gel state at about 3%. In the gel state, the system does not flow, exhibits a polydomain structure on a microscopic level, and strongly scatters light. Below the gelation point, the system is homogeneous and behaves like a usual nematic, so the continuum theory of liquid crystals can be applied for interpreting the experimental data. Using the dynamic Fréedericksz transition technique, the dependence of the splay elastic constant and the rotational viscosity on the polymer concentration have been obtained. Comparing the dynamic behavior of block copolymer solutions with the respective homopolymer solutions reveals that, above a mass concentration of 1%, self-assembling of the block copolymer chain segments in clusters occurred, resulting in a gel state at higher concentrations. The effective cluster size is estimated as a function of the concentration, and a scaling-law behavior near the sol-gel transition is confirmed. This technique may serve as an alternative method for determining the gelation point.
منابع مشابه
Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals
Density functional approach was used to study the isotropic- nematic (I-N) transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition den...
متن کاملBuckling instability in liquid crystalline physical gels.
In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil-side-group liquid-crystalline polymer-coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical mic...
متن کاملDirector Structures in a Chiral Nematic Slab: Threshold Field and Pitch Variations
Abstract The liquid crystal director distribution is determined for a confined chiral nematic slab. The molecular director distribution of the field-controlled chiral nematic slab is directly calculated. The director profiles for the tilt and the twist angles, under different applied fields, are calculated in the slab with weak boundary conditions. Then, the dependence of the threshold field on...
متن کاملسمتگیری مولکولهای بلور مایع نماتیک در وضعیت دو بعدی و اثر چنگ زدگیهای متناهی و نامتناهی
In this paper, the director distribution is calculated for a nematic liquid crystal, in the cell with different surface anchoring conditions and external fields. The effects of finite and infinite surface anchoring on molecular orientations for one dimensional geometry are discussed. In these situations, the planar alignment is considered. Then, in a two dimensional geometry the planar and homo...
متن کاملImprovement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method.
In a multicomponent nematic liquid crystal (NLC) mixture of a liquid crystal (negative-type NLC) and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2011